A discontinuous Galerkin method with Hancock-type time integration for hyperbolic systems with stiff relaxation source terms
نویسندگان
چکیده
A new discretization method for hyperbolic systems with stiff relaxation source terms (hyperbolic-relaxation equations) is introduced. The method is based on Huynh’s “upwind moment scheme” for hyperbolic conservation laws with implicit treatment of the source term. A Von Neumann analysis shows superiority in both stability and accuracy of the resulting fully discrete scheme over the method-of-line based semi-discrete schemes, and numerical experiments confirm the analysis. Our goal is developing a unified numerical method for simulating a continuum and transitional flow.
منابع مشابه
Discontinuous Galerkin Methods for Extended Hydrodynamics
This dissertation presents a step towards high-order methods for continuum-transition flows. In order to achieve maximum accuracy and efficiency for numerical methods on a distorted mesh, it is desirable that both governing equations and corresponding numerical methods are in some sense compact. We argue our preference for a physical model described solely by first-order partial differential eq...
متن کاملExplicit Finite Volume Schemes of Arbitrary High Order of Accuracy for Hyperbolic Systems with Stiff Source Terms
In this article we propose a new class of finite volume schemes of arbitrary accuracy in space and time for systems of hyperbolic balance laws with stiff source terms. The new class of schemes is based on a three stage procedure. First, in order to achieve high order accuracy in space, a nonlinear weighted essentially non-oscillatory reconstruction procedure is applied to the cell averages at t...
متن کاملImplicit-Explicit methods for hyperbolic systems with hyperbolic and parabolic relaxation
In this talk we discuss the problem of constructing effective high order methods for the numerical solution of hyperbolic systems of balance laws, in presence of stiff source. Because of the stiffness, the use of implicit integrators is advisable, so that no restrictions on the time step due to small relaxation time will appear. Two different relaxation systems will be considered, namely hyperb...
متن کاملAccuracy enhancement of discontinuous Galerkin methods for stiff source terms
Discontinuous Galerkin (DG) methods exhibit ”hidden accuracy” that makes the superconvergence of this method an increasing popular topic to address. Previous work has implemented a convolution kernel approach that allows us to improve the order of accuracy from k+1 to order 2k+m for time-dependent linear convection-diffusion equations, where k is the highest degree polynomial used in the approx...
متن کاملHigh order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows
In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...
متن کامل